Chapter 14 Review
Acids and Bases

1. What would the [OH⁻] be for a 0.0545 M solution of hydrofluoric acid?

2. What would be the pH for a 0.0333 M solution of lithium hydroxide?

3. What would be the [H⁺] for a 0.0745 M solution of calcium hydroxide?

4. Calculate the pH of the following solutions.
 a. 0.1825 g HCl dissolved in 200 cm³ of distilled water.

 b. 0.98 g of H₂SO₄ dissolved in 500 cm³ of distilled water. (Assume the acid acts as a dibasic acid by completely dissociating).

5. Methanoic acid, HCOOH, is a weak acid with a \(K_a = 1.6 \times 10^{-4} \). Calculate the pH of a 0.2 M solution of methanoic acid.

6. Determine the percent dissociation of a 2.25 M weak base solution with a pH = 11.8.

7. What is the pH of a 0.18 M solution of NH₄Cl? (\(K_b \) of NH₃ = 1.8 \(\times 10^{-5} \))
8. Sodium Benzoate, C_6H_5COONa, is a salt of the weak acid, benzoic acid C_6H_5COOH. A 0.10 M solution of sodium benzoate has a pH of 8.60.
 a. Calculate the $[OH^-]$ in the sodium benzoate solution described above.

 \[
 \text{pH} = 5.40 \\
 [OH^-] = 3.98 \times 10^{-6} \text{ M}
 \]

 b. Calculate the value of the equilibrium constant for the rxn:

 \[
 C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^- \\
 \]

 \[
 K_b = \frac{(3.98 \times 10^{-6})^2}{9.7 \times 10^{-2}} \\
 [K_b = 1.6 \times 10^{-10}]
 \]

 c. Calculate the acid dissociation constant, K_a, for benzoic acid.

 \[
 K_a = \frac{[H_2O] [OH^-]}{[C_6H_5COOH]} \\
 [K_a = 6.25 \times 10^{-5}]
 \]

 d. Identify the acid, the base, the conjugate acid, and the base in the equation above.

 \[
 C_6H_5COO^- \quad \text{Base} \\
 C_6H_5COOH \quad \text{C.A.} \\
 H_2O \quad \text{Acid} \\
 OH^- \quad \text{C.B.}
 \]

9. Determine if the following salts are acidic, basic, or neutral:
 a. NaF \textbf{Basic} \\
 b. NH$_4$Cl \textbf{Acidic} \\
 c. LiBr \textbf{Neutral} \\
 d. KCN \textbf{Basic} \\
 e. CH$_3$NH$_3$Cl \textbf{Acidic} \\
 f. NaF \textbf{Basic}

10. Discuss the three different definitions of acids and bases (Arrhenius, Bronsted-Lowery, and Lewis).

11. Put the following in order of increasing acid strength:
 a. HClO$_3$, HIO$_3$, HBrO$_3$
 b. HAsO$_4^{2-}$, H$_3$AsO$_4$, H$_2$AsO$_4^-$

12. Put the following in order of increasing base strength:
 a. SeO$_4^{2-}$, H$_2$SeO$_4$, HSeO$_4^-$
 b. IO$^-$, I$_2$O$_7^-$, IO$_5^-$